Facile Synthesis of Non-Graphitizable Polypyrrole-Derived Carbon/Carbon Nanotubes for Lithium-ion Batteries
نویسندگان
چکیده
Graphite is usually used as an anode material in the commercial lithium ion batteries (LIBs). The relatively low lithium storage capacity of 372 mAh g(-1) and the confined rate capability however limit its large-scale applications in electrical vehicles and hybrid electrical vehicles. As results, exploring novel carbon-based anode materials with improved reversible capacity for high-energy-density LIBs is urgent task. Herein we present TNGC/MWCNTs by synthesizing tubular polypyrrole (T-PPy) via a self-assembly process, then carbonizing T-PPy at 900 °C under an argon atmosphere (TNGC for short) and finally mixing TNGC with multi-walled carbon nanotubes (MWCNTs). As for TNGC/MWCNTs, the discharge capacity of 561 mAh g(-1) is maintained after 100 cycles at a current density of 100 mA g(-1). Electrochemical results demonstrate that TNGC/MWCNTs can be considered as promising anode materials for high-energy-density LIBs.
منابع مشابه
A facile one-pot method for synthesis of low-cost iron oxide/activated carbon nanotube electrode materials for lithium-ion batteries.
We designed a facile one-pot method to synthesize iron oxide/activated carbon nanotubes (IO/ACNTs) using as-prepared carbon nanotubes (APCNTs) modified by alkali solid-activation. The open-ended CNTs and iron oxide loading could be realized in one step. The resulting IO/ACNT hybrids, as an anode material for lithium-ion batteries (LIBs), exhibited high reversible lithium storage capacity and ex...
متن کاملFacile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties.
Hierarchical networks with highly interconnected V2O5 nanosheets (NSs) anchored on skeletons of carbon nanotubes (CNTs) are prepared by a facile hydrothermal treatment and a following calcination for the first time. Benefiting from these unique structural features, the as-prepared CNT@V2O5 material shows dramatically excellent electrochemical performance with remarkable long cyclability (137-11...
متن کاملSynthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries
In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...
متن کاملA nitrogen-containing carbon film derived from vapor phase polymerized polypyrrole as a fast charging/discharging capability anode for lithium-ion batteries.
A nitrogen-containing carbon (N-C) film was synthesized by pyrolysis of vapor phase polymerized polypyrrole (PPy). This carbon film exhibits excellent rate capability and cyclability as a lithium-ion battery anode. The reversible capacities are 908.4, 825.7, 664.0, 531.6, 415.5 and 325.9 mA h g(-1) at 1C, 2C, 5C, 10C, 20C and 40C, respectively.
متن کاملAn Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کامل